
Reef

Sebastian Angel+, Eleftherios Ioannidis+, Eli Margolin+, Srinath Setty*, Jess Woods+

+University of Pennsylvania, *Microsoft Research

Fast Succinct Non-Interactive Zero-Knowledge
Regex Proofs

1

Scenario - Clinical Trials

2

👋

Vikki can’t ensure Patty actually qualifies

👩⚕👩💼

Patty registers online for Vikki’s clinical trial and is
automatically accepted

🧬

Patty Vikki

.*ACTG…

Have Patty send her DNA

3

Vikki has Patty’s DNA in plain text, even if Patty
isn’t accepted into the trial

👩⚕👩💼

Patty can send Vikki her DNA to verify

🧬
Patty Vikki

.*ACTG…

We want to prove Patty qualifies for
Vikki’s trial

4

Without Vikki learning Patty’s DNA before
she’s enrolled

Zero Knowledge Proofs

5

Vikki only learns if Patty qualifies for her trial

👩⚕👩💼

Patty can register for Vikki’s trial and attach a proof that
she qualifies

🧬

👋Patty Vikki

.*ACTG…

How to make a ZKP in 4 easy steps…
1. Vikki expresses her regex matching statement as a circuit satisfiability

instance

2. Vikki publishes her circuit

3. Patty finds a satisfying witness

4. Patty proves to Vikki that she knows the satisfying witness

6

1. Vikki expresses her regex matching statement as a circuit satisfiability
instance

2. Vikki publishes her circuit

3. Patty finds a satisfying witness

4. Patty proves to Vikki that she knows the satisfying witness

field match(field commit, field blind) {
 field[SIZE] document = open(commit,

 blind);
 field state = 0; // initial state
 for (i = 0; i < SIZE; i++) {
 state = delta(state, document[i]);
}

 if (state == 2) { // accepting state
 return 1; // match
 } else {
 return 0; // no match
}

}

Naive Solution
a+b.*

7

0 1 2
a b

ab {a,b}

Limited Expressivity

(Q: {0,1,2}, Σ: {a,b}, δ, q0:{0}, F:{2})

field match(field commit, field blind) {
 field[SIZE] document = open(commit,

 blind);
 field state = 0; // initial state
 for (i = 0; i < SIZE; i++) {
 state = delta(state, document[i]);
}

 if (state == 2) { // accepting state
 return 1; // match
 } else {
 return 0; // no match
}

}

field match(field commit, field blind) {
 field[SIZE] document = open(commit,

 blind);
 field state = 0; // initial state
 for (i = 0; i < SIZE; i++) {
 state = delta(state, document[i]);
}

 if (state == 2) { // accepting state
 return 1; // match
 } else {
 return 0; // no match
}

}

field delta(field state, field cur_char) {

if (state == 0 && cur_char == 0) return 1;

if (state == 0 && cur_char == 1) return 0;

 ...

if (state == 2 && cur_char == 1) return 2;
return −1; // invalid state or character

}

O(# of states · |Σ|) if statementsUnfold delta |document| times

Going from match to circuit

8

Key Insight 1 - Skipping Alternating Finite
Automata

Alternating Finite Automata give us greater expressivity

We can extend AFA to skip irrelevant parts of the document

9

Key Insight 2 - Lookup Arguments

We can represent the cascading if statements as (start state,
character, end state) lookup arguments in the circuit

10

Key Insight 3 - Recursion

We can make iterating through the document much faster using a
recursive proof system

11

Reef is able to decouple Prover running time from
document size

12

Reef - Zero Knowledge Regex Proofs
• Patty commits to her DNA

• Vikki publishes a regex of the
genetic variant required to
participate in her trial

• Patty proves (in zero knowledge)
that her committed DNA
matches the public regex

• Vikki verifies Patty’s proof

13

👩⚕👩💼
Patty Vikki

🧬

ACTG…

Roadmap
Background

Reef

Skipping Alternating Finite Automata

Lookup Arguments

Adding Recursion

Optimizations

Evaluation

Future Work

Summary

14

Background - Zero Knowledge Proofs
• Protocol that allows a Prover P to prove some statement to a Verifier V
• Proofs are…

• Complete - V is always convinced of a true statement

• Sound - P cannot convince V of a false statement

• Zero Knowledge - V learns nothing except the truth of the statement

• Proofs are arithmetized using rank-1 constraint satisfiability (R1CS)

• 1 constraint = 1 multiplication in circuit

• More constraints → more complex proof

15

Background - Recursive Proof Systems
• Produce a proof π for each do x

• Circuit size is parameterized by just one iteration

16

for (i = 0; i < j; i++) {
 do x;
}

…π0 π1+V(π0) πj-1+V(πj-2) πj+V(πj-1)

Background - Alternating Finite Automata
• Generalization of NFA with states

labeled as ∃ or ∀

• ∃ same as normal NFA

• ∀ takes all transitions in parallel

• All ∀ transition paths must accept

• ∀ transitions support lookarounds

17

(a*(b(aa)*))*

a

0: ∀ 1: ∃ 2: ∃

3: ∃

a

b

b

b

b b

a

a
b

Background - Alternating Finite Automata

18

abaa

a

0: ∀ 1: ∃ 2: ∃

3: ∃

a

b

b

b

b b

a

a
b 0: ∀

1: ∃

a
0: ∀

0: ∀ 0: ∀ 0: ∀

2: ∃ 1: ∃

a a

a a

b

b

abaaabaaabaaabaa

Skipping Alternating Finite Automata
• Compress multiple wildcards (.{n},.{m,n},.*) into a single transition

19

(?=.*a).{1,2}

0: ∀

1:∃ 2: ∃

3: ∃ 4: ∃

5: ∃6: ∃

a

b

ε

·

·
··

ε

·

0: ∀

1:∃

3: ∃

2: ∃

4: ∃

a b ·

·* ·{1,2}

·* ·*

SAFA
• Designed to work with NP-Checkers

• Reef traverses the SAFA with non-deterministic hints

• Prover provides pre and post skip cursor

• Only need to check that the hints are correct

• Keep track of finished branches with a minimal stack

• But how do we represent SAFA?

20

Lookup Arguments
• Prove that some values {v0,…,vm-1} are in a table T
• 2 tables

21

ACTGCTACGTCACT
GACTCTCAGACGTC
ACTGACGCTATATAC
GCGCTACGTATCAC
GGCACTTACAGTTA
ACACTGTGGGAC

0 A
1 C
2 T
3 G
… …

0 G 0
0 T 0
0 C 0
0 A 1
… … …

Commitment -
ties characters to
indices

Replaces the
delta function0:∃ 1:∃ 2:∃

A C

A{C,T,G}
 {A,T,G}

Everything’s Better with Recursion
• Naive lookup argument → m·(log(n) + n)

• With recursion maintain a running claim to check at the end

• As the number of lookups increases, cost-per-lookup decreases

22

Check lookup
inclusion at each

step

|D|·(log(|D|) + |D|)

|D|·(log(|SAFA|) + |SAFA|)

|D|·(log(|D|)) + |D|

|D|·(log(|SAFA|)) + |SAFA|

Optimizations
• Hybrid tables

• Public SAFA Table + Private Document Table → mlog(|Document|·|SAFA|)
constraints

• Single Hybrid Public/Private Table → mlog(|Document|+|SAFA|) constraints

• Document Projections

• Run lookup over subsets of the larger document table

• Works for regexs with prescribed offsets

• .{10}abc.*

• .*abc

23

Roadmap
Background

Reef

Skipping Alternating Finite Automata

Lookup Arguments

Adding Recursion

Optimizations

Evaluation

Future Work

Summary

24

Evaluation
• Can Reef support a variety of regexs?

• Can Reef support a variety of document sizes?

• Is Reef efficient for the prover?

• Is Reef efficient for the verifier?

• How does Reef compare to existing/alternative solution?

• Do SAFA meaningfully reduce the size of the automata?

• What impact do Reef’s additional optimizations have?

25

• Can Reef support a variety of regexs?

• Can Reef support a variety of document sizes?

• Is Reef efficient for the prover?

• Is Reef efficient for the verifier?

• How does Reef compare to existing/alternative solution?

• Do SAFA meaningfully reduce the size of the automata?

• What impact do Reef’s additional optimizations have?

Reef supports more robust Regexs
More expressivity with fewer constraints

26

Fixed
String

Matching
Wildcards Kleene

stars Negation Alternation Lookarounds # Constraints

Reef O(⍺log(D+QSAFA+|Σ|))

Zombie O(D·QTNFA)

ZKRegex O(D·QTNFA·log(|Σ|))

zkreg O(D+QAC-DFA)

D - Document Size, Q - # Transitions in Automata, Σ - Alphabet, ⍺ - Number of
lookups

Reef Supports a Variety of Applications

27

Document Size Average SAFA Size -
States

Average SAFA Size -
Transitions

Document Redaction
(Small) 415 331 42,318

Document Redaction
(Large) 1,000 908 116,751

ODoH 128 16 1,958

Strong Password
Match/Non-Match 12/6-9 21 1,188

DNA Match/Non-Match 32 million - 43 million 546 29,832

And It’s More Efficient - Fewer Constraints

28

DFA DFA+Recursion SAFA+lookup Reef

Document
Redaction

(Small)
23,041,771 67,472 54,679 52,631

Document
Redaction (Large) X 141,712 57,628 54,636

ODoH 1,552,754 24,131 22,573 18,437

Password Match/
Non-Match X X 21,002/21,721 19,982/20,725

DNA Match/Non-
Match X X 96,296/107,184 85,352/95,916

DNA Non-Match/MatchDocument Redactions (Small and Large)

And It’s More Efficient - Faster Total Prover Time

29

Even without Reef’s additional optimizations, SAFA+lookup is orders of
magnitude faster

Future Work
• Extending Reef to Context Free Grammars

• JSON Validation

• Malware detection via YARA rules

• Static Analysis = Regex + Propositional Logic

• How to scale to checking hundreds of regexs at once?

• Zero Knowledge Proof of Compilation

• Use Reef for parsing phase

30

Summary
We want…

• Succinct Zero Knowledge Proofs

• For a variety of regexs

• That scale well for large documents

We can…
• Use SAFA to get better expressivity

• And skip irrelevant parts of the document

• Use lookup tables for document commitment and SAFA transitions

Reef!
• Support for a variety of applications

• Fast Prover and Verifier times

• Fewer constraints

31

Thank you!

Contact: ecmargo@seas.upenn.edu

